Astronautika: misije

Trenutno, 'Voyageri' su na preko 130 odn. 156 AJ od kuće. Kad bi imali termometre, šta misliš koliku bi temperaturu pokazivali?

1

Ako ćemo da teramo mak na konac u vezi s tim, nije previše smisleno govoriti o 'temperaturi' u slučaju 'Voyagera'. Dopusti da objasnim zašto.

Ali najpre... zamisli da na trenutak izađeš napolje. Recimo da je ugodnih 20 stepeni Celzijusa. Nema vetra, a vlaga normalna (sa malo smoga). Ali Sunce ti je tačno iznad glave, sjajno sja. Ubrzo ti postaje toplo i skidaš jaknu.

Nekoliko sati kasnije, počinje da pada noć. Temperatura je i dalje 20 stepeni a noć je savršeno bez oblaka. I dalje nema vetra, i dalje je normalna vlažnost. Ako izađeš napolje, uskoro će ti postati malo sveže. Ubrzo se odlučuješ da obučeš duks ili džemper jer ti je, eto, hladno.

Kako je to moguće? U oba slučaja temperatura vazduha je 20 stepeni Celzijusa. Kako može da ti bude vruće danju, a hladno noću?

Očito je, zar ne. Sunce sija tokom dana. Noću, pogotovo u noći bez oblaka, ne samo da nema Sunca, već naša tela slobodno zrače toplotu u hladno, tamno nebo.

Ukratko, naše telo izmjenjuje toplotu s okolinom na više načina. Da, naše telo je u kontaktu sa okolnim vazduhom, tako da postoji sprovođenje toplote, a takođe i konvekcija toplote. Ali postoji i radijaciona izmena toplote. Tokom dana upijamo puno dodatne toplote od Sunca, tako da nismo u toplotnoj ravnoteži s okolnim vazduhom. Suprotno tome, tokom noći zračimo puno toplote u nebo (u osnovi, u duboki svemir) pa opet nismo u ravnoteži s okolnim vazduhom.

2
Vitalni izvor života na 'Voyagerima' jeste struja. Nju obezbeđuje po tri termoelektrična generatora. Toplota koju proizvodi raspad plutonijuma prolazi kroz bimetal, stvara struju, a onda preko radijatorskih panela odlazi u kosmos.

3
Grafikon koji prikazuje proizvodnju struje u RTG-ovima. Pored 'Voyagera', radi poređenja su prikazani podaci i za komunikacione satelite LES 8 i 9'Galileo' i 'Ulysses'. RTG-3 na 'Voyageru 2' još uvek radi ali ne radi senzor, tako da nije prikazan ovde. Pošto su RTG-ovi na oba 'Voyagera' napravljena u isto vreme, očekuje se i da će prestati da rade otprilike u isto vreme.

Sada da se vratim na slučaj udaljenih kosmičkih sondi poput 'Voyagera'. One već decenijama putuju kroz okruženje koje predstavlja gotovo savršeni vakuum. U njemu postoje neke čestice: zalutali atomi (uglavnom vodonikovi), naelektrisane čestice solarnog vetra, naelektrisane čestice iz međuzvezdanog medija, itd. Ali sve one su izuzetno malobrojne[1]. Bilo koja toplotna energija koja se razmjenjuje s tim česticama provođenjem (kondukcijom) ili konvekcijom biće apsolutno zanemariva. Dakle, zapravo nije važno ima li solarni vetar temperaturu od 1 stepen kelvina ili milion stepeni (ili ima li čak bilo kakvu temperaturu; protok čestica tako velike brzine nije nužno u stanju koje može biti razumno opisano temperaturnom vrednošću); neće osetno uticati na temperaturu sonde.

Sonde takođe primaju svetlost (toplotu) sa udaljenog Sunca[2], od čega deo apsorbuju[3]. I toplotu koju stvaraju nuklearni generatori i sama elektronika sonde zrači u duboki svemir. Matematika je zapravo prilično jednostavna. Ako je jedna sonda udaljena od Sunca koliko i Zemlja, dobijala bi oko 1370 vati solarnog greanja po kvadratnom metru. (Taj se broj u nekoj literaturi naziva solarnom konstantom.) No 'Voyager 1' je preko 156 puta udaljeniji od Zemlje, a intenzitet Sunčevog zagrevanja proporcionalan je obrnutom kvadratu udaljenosti. Dakle, 'Voyager 1' od Sunca prima samo oko 56 milivata toplote po kvadratnom metru[4]. Sada zamisli (samo da bi stvari bile jednostavnije) da je kosmička sonda koju neki Zemljani nazivaju MJS-1 a neki 'Voyager 1' sferna, i da joj je površina poprečnog preseka 1 kvadratni metar. Još od Arhimeda (pre 2200 godina) znamo da bi ukupna površina takve sferne letilice iznosila 4 kvadratna metra. Ako je u termalnom ekvilibrijumu(temperaturnoj ravnoteži) sa svojom okolinom, znači da zrači tih 56 mW toplote u duboki svemir. Takozvani Štefan[5]-Bolcmanov zakon nam govori kako su njegova temperatura T i izračena snaga P povezani: P=σAT4, gde je A površina, a σ Štefan-Bolcmanova konstanta. Rešavajući jednačinu po T, dobijamo T∼23 K .

Dakle, da je 'Voyager 1' tzv. termodinamičko crno telo, merio bi temperaturu od oko 23 Kelvinova stepena na 156 AJ od Sunca. Ali to ne znači da je to temperatura međuplanetnog/međuzvezdanog medija na tom mestu. Zapamtite, provođenje toplote i konvekcija toplote su prilično nevažni u okruženju koje je milion puta bolji vakuum od bilo kojeg koji možemo da stvorimo u zemaljskim laboratorijama. Ovo je samo ravnotežna temperature same letjelice.

Tačnije, to bi bila ravnotežna temperatura mrtve svemirske letilice. Ali 'Voyager 1' još nije sasvim mrtav. Na brodu postoji izvor energije: radioizotopski termoelektrični generator (MHW-RTG) koji proizvodi kilovate otpadne toplote, pa čak i sada oko par stotina vati električne energije[6]. Većina te električne energije koristi se za napajanje podsistema svemirske letilice i na kraju se pretvara u toplotu. Dakle, na brodu je mnogo viška toplote, bez obzira na male količine solarnog grejanja koje letilica neprestano prima. Dakle, njena unutrašnjost je još uvek na pristojnoj temperaturi, dobro unutar margina radne specifikacije. I to će tako ostati sve dok se letica ne ugasi, dok joj se ne potroši napajanje. Čak i tada će biti zaostalog grejanja iz nuklearnog goriva u generatorima. Kad to nestane, stolećima od sada, svemirska letilica će polako doći do ravnotežne temperature koja će bito određena količinom Sunčeve svetlosti koju prima, kao i vlastitim toplotnim svojstvima: koliko dobro apsorbuje Sunčevu svetlost i koliko lako emituje toplotno (infracrveno) zračenje . Ove karakteristike su, zapravo, deo specifikacija letilice i korišćene su u inženjerskim proračunima prilikom projektovanja letilice, a posebno njenog toplotnog upravljanja.

4
Ilustracija prikazuje kako Nasin 'Habl' teleskop gleda svetlosnim godinama duž putanja sondi 'Voyager' kroz međuzvezdani prostor.

 5

[1] Jedno od najčešćih pitanja na raznim forumima, a isto toliko odgovora. Wikipedija kaže da u 1 cm3 hladnog i gustog međuzvezdanog medija ima oko milion (106) molekula gasova. Na Zemlji, na nivou mora ima ih oko 1019, a u našim laboratorijama oko 1010 u vakuumskim komorama. Brojčano, oko 91% su atomi vodonika, itd.

  Međutim, neki drugi proračuni kažu da u 1 m3 međuzvezdanog prostora ima 0,25 atoma a neko kaže 1 atom.

[2] Na toj daljini, sonde 'vide' Sunce i ono je i dalje daleko najblještaviji objekat na njihovom nebu – čovek ne bi smeo da gleda u njega! – iako je jačina svetla opala preko 20.000 puta.

[3] Ko voli šerlok-holmovske zagonetke, preporučujem mu da pročita kako je jedan mladi Rus rešio zagonetku koja je pretila da sruši temelje nauke, pa čak i samog Njutna. Ima veze s ovom temom.

[4] 'Voyager 2' nam je oko 25 AJ bliži, pa prima malo više energije od Sunca: oko 80 milivata.

[5] Matematičar i fizičar Jožef Štefan je bio Slovenac koji je sa samo 23 godine doktorirao u Beču. Bolcman je bio njegov student.

[6] U vreme lansiranja, RTG je davao oko 470 W struje. Plutonijumsko gorivo ima vreme poluraspada oko 87,8 godina, tako da je danas ostalo samo oko 70,38% plutonijuma-238.. Oko 2050, ostaće ga 56,5%, što je ispod količine koja je minimalno potrebna za rad predajnika. Računa se da se svake godine gubi oko 0.8% stuje

  Da bi sačuvao struju, NASA je 2011. isključila na sondi grejač ultraljubičastog spektrometra. On je bio projektovan da radi na najnižoj temperaturi od -35ºC, ali je nakon isključivanja grejača nastavio sa radom i na -79ºC. Inženjeri misle da je nastavio da radi i dalje, ali detektor temperature ne može da meri ispod toga. Danas je spektrometar isključen.

 

NASA ponovo uspostavila kontakt sa 'Voyagerom 2'

Šta su otkrili Vojadžeri?

Epopeja VOYAGER elektronska knjiga o Vojadžeima (Draško Dragović)

Na koji način 'Voyageri' šalju dovoljno snažne signale 
Koliko je prošlo od lansiranja gledajući sa Voyagera?
'Voyageri' po stoti put
Voyager 2 nastavio sa radom nakon isključivanja instrumenata radi uštede energije, javlja NASA
'Voyager-2' ostaje sam
Voyager 2 nastavio sa radom nakon isključivanja instrumenata radi uštede energije, javlja NASA
'Voyagerov' širokougaoni pogled na Jupiter
Istorija misije Voyager - Iz knjige Epopeja Voyager!
'Voyager 1' uključio motore posle 37 godina!
Statusi misije Voyager na dohvat miša
Kako ’Voyaregi’ šalju dovoljno jak signal da možemo da ga uhvatimo, uprkos neverovatnoj udaljenosti?
Intrevju sa „Voyagerom 2“ ... sa obala solarnog sistema
„Voyager 1“ i zvezda Gliesse 445
Ide, ide, ali dokle? „Voyager 1“ je...
Voyager 1 - planovi za produžetak misije ostaju pod znakom ?
Voyager 2 – Prvih 35 godina
 
Draško Dragović
Author: Draško Dragović
Dipl inž. Drago (Draško) I. Dragović, napisao je više naučno popularnih knjiga, te više stotina članaka za Astronomski magazin i Astronomiju, a učestvovao je i u nekoliko radio i TV emisija i intervjua. Interesuje ga pre svega astronautika i fizika, ali i sve teme savremenih tehnologija XXI veka, čiji detalji i problematika često nisu poznati široj čitalačkoj publici. Izgradio je svoj stil, lak i neformalan, često duhovit i lucidan. Uvek je spreman na saradnju sa svojim čitaocima i otvoren za sve vidove komunikacije i pomoći. Dragovićeve najpoznatije knjige su "KALENDAR KROZ ISTORIJU", "MOLIM TE OBJASNI MI" i nova enciklopedija "NEKA VELIKA OTKRIĆA I PRONALASCI KOJA SU PROMENILA ISTORIJU ČOVEČANSTVA"

Zadnji tekstovi: